webrtc的帶寬估計(jì)分為兩部分,一部分為發(fā)送端根據(jù)rtcp反饋信息進(jìn)行反饋,另一部分為接收端根據(jù)收到的rtp數(shù)據(jù)進(jìn)行相應(yīng)的碼率估計(jì)[1]。
本文先分析發(fā)送端根據(jù)rtcp反饋信息進(jìn)行碼率調(diào)整的部分代碼。
具體計(jì)算公式:
rtp_stream_receiver中有一個(gè)繼承自抽象類(lèi)RtpRtcp的ModuleRtpRtcpImpl,ModuleRtpRtcpImpl中有一個(gè)rtcp_receiver。當(dāng)有RTCP包到來(lái)時(shí),逐層處理至rtcp_receiver,當(dāng)包是rtcp receiver report包,則會(huì)將包解析,然后在ModuleRtpRtcpImpl中再次調(diào)用rtcp_receiver中的TriggerCallbacksFromRTCPPacket函數(shù),觸發(fā)對(duì)應(yīng)rtcp的一些事件,反饋觸發(fā)的主要是_cbRtcpBandwidthObserver的觀察者(RtcpBandwidthObserverImpl),這個(gè)觀察者收到對(duì)應(yīng)的report block之后會(huì)計(jì)算成帶寬估計(jì)所需要的參數(shù),并調(diào)用屬主bitratecontrolImpl類(lèi)對(duì)帶寬進(jìn)行估計(jì),這里會(huì)調(diào)用SendSideBandwidthEstimation中的UpdateReceiverBlock進(jìn)行實(shí)際的帶寬評(píng)估。
這個(gè)函數(shù)中最主要的部分就是RTT的計(jì)算,webrtc中對(duì)于RTT平滑的因子是一個(gè)線性增長(zhǎng)的因子。
/* 這個(gè)函數(shù)根據(jù)對(duì)應(yīng)的report block生成了一個(gè)新的RTCPReportBlockInformation結(jié)構(gòu)體, * 并計(jì)算出對(duì)應(yīng)的RTT,多report block在調(diào)用點(diǎn)處執(zhí)行循環(huán)。 */ void RTCPReceiver::HandleReportBlock( const RTCPUtility::RTCPPacket& rtcpPacket, RTCPPacketInformation& rtcpPacketInformation, uint32_t remoteSSRC) EXCLUSIVE_LOCKS_REQUIRED(_criticalSectionRTCPReceiver) { // This will be called once per report block in the RTCP packet. // We filter out all report blocks that are not for us. // Each packet has max 31 RR blocks. // // We can calc RTT if we send a send report and get a report block back. // |rtcpPacket.ReportBlockItem.SSRC| is the SSRC identifier of the source to // which the information in this reception report block pertains. // Filter out all report blocks that are not for us. if (registered_ssrcs_.find(rtcpPacket.ReportBlockItem.SSRC) == registered_ssrcs_.end()) { // This block is not for us ignore it. return; } RTCPReportBlockInformation* reportBlock = CreateOrGetReportBlockInformation(remoteSSRC, rtcpPacket.ReportBlockItem.SSRC); if (reportBlock == NULL) { LOG(LS_WARNING) << "Failed to CreateReportBlockInformation(" << remoteSSRC << ")"; return; } // 用于RTCP超時(shí)的計(jì)算。 _lastReceivedRrMs = _clock->TimeInMilliseconds(); // 其他字段的拷貝。 const RTCPPacketReportBlockItem& rb = rtcpPacket.ReportBlockItem; reportBlock->remoteReceiveBlock.remoteSSRC = remoteSSRC; reportBlock->remoteReceiveBlock.sourceSSRC = rb.SSRC; reportBlock->remoteReceiveBlock.fractionLost = rb.FractionLost; reportBlock->remoteReceiveBlock.cumulativeLost = rb.CumulativeNumOfPacketsLost; if (rb.ExtendedHighestSequenceNumber > reportBlock->remoteReceiveBlock.extendedHighSeqNum) { // We have successfully delivered new RTP packets to the remote side after // the last RR was sent from the remote side. _lastIncreasedSequenceNumberMs = _lastReceivedRrMs; } reportBlock->remoteReceiveBlock.extendedHighSeqNum = rb.ExtendedHighestSequenceNumber; reportBlock->remoteReceiveBlock.jitter = rb.Jitter; reportBlock->remoteReceiveBlock.delaySinceLastSR = rb.DelayLastSR; reportBlock->remoteReceiveBlock.lastSR = rb.LastSR; if (rtcpPacket.ReportBlockItem.Jitter > reportBlock->remoteMaxJitter) { reportBlock->remoteMaxJitter = rtcpPacket.ReportBlockItem.Jitter; } int64_t rtt = 0; uint32_t send_time = rtcpPacket.ReportBlockItem.LastSR; // RFC3550, section 6.4.1, LSR field discription states: // If no SR has been received yet, the field is set to zero. // Receiver rtp_rtcp module is not expected to calculate rtt using // Sender Reports even if it accidentally can. if (!receiver_only_ && send_time != 0) { // 當(dāng)RR在SR之前發(fā)送,send_time為0. // delay計(jì)算: // Send SR Receive RR // | delay in RR | // | || | // || || // // RTT = total_time - delay_in_RR // = receiver_rr_time - send_sr_time - delay_in_RR // 即使中間幾個(gè)SR丟包,但是如果RTT本身是平滑的,那么RTT不會(huì)受到這幾個(gè)丟包的影響 // 因?yàn)镾R->RR之間的delay可以精確計(jì)算。 uint32_t delay = rtcpPacket.ReportBlockItem.DelayLastSR; // Local NTP time. uint32_t receive_time = CompactNtp(NtpTime(*_clock)); // RTT in 1/(2^16) seconds. uint32_t rtt_ntp = receive_time - delay - send_time; // Convert to 1/1000 seconds (milliseconds). rtt = CompactNtpRttToMs(rtt_ntp); if (rtt > reportBlock->maxRTT) { // Store max RTT. reportBlock->maxRTT = rtt; } if (reportBlock->minRTT == 0) { // First RTT. reportBlock->minRTT = rtt; } else if (rtt < reportBlock->minRTT) { // Store min RTT. reportBlock->minRTT = rtt; } // Store last RTT. reportBlock->RTT = rtt; // store average RTT // RTT的平滑計(jì)算。 // 如果這個(gè)塊是在CreateOrGetReportBlockInformation新生成的, // 則權(quán)重會(huì)從0開(kāi)始隨著受到的report逐漸遞增。 // srtt(i) = i/(i+1)*srtt(i-1) + 1/(i+1)*rtt + 0.5 if (reportBlock->numAverageCalcs != 0) { float ac = static_cast(reportBlock->numAverageCalcs); float newAverage = ((ac / (ac + 1)) * reportBlock->avgRTT) + ((1 / (ac + 1)) * rtt); reportBlock->avgRTT = static_cast(newAverage + 0.5f); } else { // First RTT. reportBlock->avgRTT = rtt; } reportBlock->numAverageCalcs++; } TRACE_COUNTER_ID1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RR_RTT", rb.SSRC, rtt); // 添加回rtcpPacketInformation,在ModuleRtpRtcpImpl中會(huì)使用這個(gè)進(jìn)行事件回調(diào)。 rtcpPacketInformation.AddReportInfo(*reportBlock); }
這個(gè)函數(shù)主要用于更新變量min_bitrate_history_,這個(gè)變量將會(huì)作用于上升區(qū)間,用來(lái)作為基數(shù),這里簡(jiǎn)單描述下。
// Updates history of min bitrates. // After this method returns min_bitrate_history_.front().second contains the // min bitrate used during last kBweIncreaseIntervalMs. // 主要結(jié)合這個(gè)函數(shù)解釋下變量min_bitrate_history_ // 這個(gè)變量的兩個(gè)維度,front記錄的是離當(dāng)前最遠(yuǎn)的時(shí)間, // 每個(gè)速率都是按照時(shí)間先后順序逐漸push到尾部。 // 因此更新的時(shí)候,需要先將超時(shí)的元素從列表頭剔除。 // 后一個(gè)維度是最小速率值, // 在相同的時(shí)間區(qū)間內(nèi),保留最小的速率值。 // |-------Interval 1---------|----------Interval 2------| // | | | // |--t1 < t2 < t3 < t4 < t5--|--t1 < t2 < t3 < t4 < t5--| // 這樣的操作較為簡(jiǎn)單,不用在每次插入元素時(shí)去判斷對(duì)應(yīng)的時(shí)間區(qū)域,再找到對(duì)應(yīng)時(shí)間區(qū)間的最小值,用部分冗余的內(nèi)存換取操作的快捷。 void SendSideBandwidthEstimation::UpdateMinHistory(int64_t now_ms) { // Remove old data points from history. // Since history precision is in ms, add one so it is able to increase // bitrate if it is off by as little as 0.5ms. while (!min_bitrate_history_.empty() && now_ms - min_bitrate_history_.front().first + 1 > kBweIncreaseIntervalMs) { min_bitrate_history_.pop_front(); } // Typical minimum sliding-window algorithm: Pop values higher than current // bitrate before pushing it. while (!min_bitrate_history_.empty() && bitrate_ <= min_bitrate_history_.back().second) { min_bitrate_history_.pop_back(); } min_bitrate_history_.push_back(std::make_pair(now_ms, bitrate_)); }
函數(shù)UpdateReceiverBlock會(huì)根據(jù)當(dāng)前的report block對(duì)當(dāng)前帶寬估計(jì)的一些變量進(jìn)行相應(yīng)的賦值,此外,只有當(dāng)傳輸包的數(shù)量達(dá)到一定數(shù)量才會(huì)再次觸發(fā)帶寬估計(jì)的調(diào)整。函數(shù)UpdateEstimate是主要用于帶寬估計(jì)的函數(shù)。
void SendSideBandwidthEstimation::UpdateEstimate(int64_t now_ms) { // We trust the REMB and/or delay-based estimate during the first 2 seconds if // we haven't had any packet loss reported, to allow startup bitrate probing. if (last_fraction_loss_ == 0 && IsInStartPhase(now_ms)) { uint32_t prev_bitrate = bitrate_; // bwe_incoming_是remb更新的值,如果當(dāng)前無(wú)丟包且在啟動(dòng)階段,直接使用remb的值。 if (bwe_incoming_ > bitrate_) bitrate_ = CapBitrateToThresholds(now_ms, bwe_incoming_); ... } } UpdateMinHistory(now_ms); // Only start updating bitrate when receiving receiver blocks. // TODO(pbos): Handle the case when no receiver report is received for a very // long time. if (time_last_receiver_block_ms_ != -1) { if (last_fraction_loss_ <= 5) { // Loss < 2%: Increase rate by 8% of the min bitrate in the last // kBweIncreaseIntervalMs. // Note that by remembering the bitrate over the last second one can // rampup up one second faster than if only allowed to start ramping // at 8% per second rate now. E.g.: // If sending a constant 100kbps it can rampup immediatly to 108kbps // whenever a receiver report is received with lower packet loss. // If instead one would do: bitrate_ *= 1.08^(delta time), it would // take over one second since the lower packet loss to achieve 108kbps. //TODO:tjl // 這里與公式有一定不同: // 1. 系數(shù)不同,且附帶一定的修正值(向上取整加1kbps) // 2. 取的是上一個(gè)時(shí)間間隔之內(nèi)最小值,比較平滑。 bitrate_ = static_cast( min_bitrate_history_.front().second * 1.08 + 0.5); // Add 1 kbps extra, just to make sure that we do not get stuck // (gives a little extra increase at low rates, negligible at higher // rates). bitrate_ += 1000; event_log_->LogBwePacketLossEvent( bitrate_, last_fraction_loss_, expected_packets_since_last_loss_update_); } else if (last_fraction_loss_ 10%: Limit the rate decreases to once a kBweDecreaseIntervalMs + // rtt. if (!has_decreased_since_last_fraction_loss_ && (now_ms - time_last_decrease_ms_) >= (kBweDecreaseIntervalMs + last_round_trip_time_ms_)) { time_last_decrease_ms_ = now_ms; // Reduce rate: // newRate = rate * (1 - 0.5*lossRate); // where packetLoss = 256*lossRate; //TODO:tjl // 當(dāng)從未開(kāi)始降低窗口值,且距離上一次衰減的時(shí)間差大于衰減周期加上rtt。 // 其實(shí)當(dāng)前貌似只有這個(gè)case下會(huì)對(duì)這兩個(gè)變量賦值。 // 這里的last_fraction_loss_是一次統(tǒng)計(jì)間隔(一定包數(shù))之間的總丟包率。 // 丟包率的單位是1/256,因此這里是(1 - 丟包率/2) * 當(dāng)前速率 // 與公式相同。 bitrate_ = static_cast( (bitrate_ * static_cast(512 - last_fraction_loss_)) / 512.0); has_decreased_since_last_fraction_loss_ = true; } event_log_->LogBwePacketLossEvent( bitrate_, last_fraction_loss_, expected_packets_since_last_loss_update_); } } // 在有效范圍內(nèi)修正。 bitrate_ = CapBitrateToThresholds(now_ms, bitrate_); }